
Braden Bagby Computational Physics Assignment 6

Foundations of the Problem

A DLA Model is a model showing how particles undergo a random walk and form clusters. We can

simulate this in physics using matrices. We will simulate two types of models.

One type, a walker is randomly placed and walks around randomly until it collides with the cluster, at

that point becoming part of the cluster.

The other model, an Eden model, the walker is randomly placed and if and only if it happens to land on

right next to the cluster it will become part of it.

Finally, we can use matrices to find the percolation threshold in a system of size n x n.

Text From the Program

I begin with the Eden model as it is the simplest.

We setup our initial values and loop a set amount of times. Each loop will be an attempted addition to

the cluster.

Within the loop, we place a walker randomly

 x=randi(SIZE);
 y=randi(SIZE);
 W(y,x) = 1; %walker initial plop

We then check if the walker is on top of the cluster, and if it is, we go to the next iteration of the loop

 if sum(sum(W&H)~=0) %walker on top of the cluster
 continue
 end

Otherwise, we check and see if the walker has landed next to the cluster

 w2=zeros(SIZE);
 w2 = circshift(W,[1 0]) + circshift(W,[-1 0]) +circshift(W,[0 1])+circshift(W,[0
-1]);
 if sum(sum(w2&H)) ~= 0

and if it has, we add it to the cluster and draw it to the screen

 H=or(W,H);

 spy(H);
 pause(0.01)

Braden Bagby Computational Physics Assignment 6

Here is the end result of the Eden cluster after 5000 iterations with a window size of 50x50

A small cluster size is expected because [Chance of landing next to original cluster] * [Number of

iterations] or 4/(50x50) * 5000 = 8. This formula does not supply the actual expected number of clusters

because as the cluster grows the chance of landing next to the cluster grows as well.

Here is another run with 5000 iterations and a window size of 25*25. The estimated expected outcome

using the same formula as before would be 29.5, making this cluster larger. Notice there are a lot more

than 29 pieces in the cluster, this is because as the cluster size increase the chance of landing next to it

increases faster and faster.

Next we will take a look at another type of DLA model. This model adds a walker that randomly walks

around until it collides with the cluster at which point it will become part of it.

Braden Bagby Computational Physics Assignment 6

We first initialize the variables and start a loop.

Inside the loop, we must place a walker randomly within the window size.

 x=randi(SIZE);
 y=randi(SIZE);
 W(y,x) = 1; %walker initial plop

If it lands on top of the current cluster we just continue to the next iteration

 if sum(sum(W&H)~=0) %walker on top of the cluster
 continue
 end

Otherwise, we move it randomly in any direction until it is next to the current cluster

 w2=zeros(SIZE);
 w2 = circshift(W,[1 0]) + circshift(W,[-1 0]) +circshift(W,[0 1])+circshift(W,[0
-1]);
 while sum(sum(w2&H)) == 0
 x = rand(1);
 if x < 0.25
 w2 = circshift(w2,[1 0]);
 W = circshift(W,[1 0]);
 else if x < 0.5
 w2 = circshift(w2,[-1 0]);
 W = circshift(W,[-1 0]);
 else if x < 0.75
 w2 = circshift(w2,[0 1]);
 W = circshift(W,[0 1]);
 else
 w2 = circshift(w2,[0 -1]);
 W = circshift(W,[0 -1]);
 end
 end
 end

 end

Once it is next to the current cluster, we add it to the cluster, draw to the screen, and continue

 H = or(W,H);
 spy(H);
 pause(0.01)

Braden Bagby Computational Physics Assignment 6

Here is a result of 500 iterations with a window size of 100. Notice this type of DLA grows a lot quicker

than the Eden cluster as each walker is used to add to the cluster unless it lands on top.

There are 485 pieces to the cluster meaning only 15 pieces landed on top of the current cluster.

Here’s another run where only 8 pieces landed on top of the cluster.

Percolation Threshold

To get one percolation threshold we need to define a nxn matrix of 0s and randomly set values in it to 1

based on a probability for each index. We then need to do this across from %0 probability to %100 to

find at what the threshold is that the makes the system always percolate.

We start by looping through probabilities %1 to 100%

for prob = 1:100
 probability = prob; %we just want to do every 5%
 probabilities(prob) = probability;
 numberPerculated = 0

Next we need to perform a number of trials for each probability. We will see how many out of these

trials percolated to calculate the probability of percolation for that probability.

Braden Bagby Computational Physics Assignment 6

 for trial = 1:trialsEach

Within each trial we must setup a SIZExSIZE matrix and randomly set values in it to 1 based on the

current probability

 H=zeros(SIZE); %setup matrix
 for x=1:SIZE
 for y=1:SIZE
 if rand(1) < (probability/100)
 H(x,y) = 1;
 end
 end
 end

Then I use BW label to create a matrix of all the clusters in this matrix

bw = bwlabel(H,8);

Next, I figure out the max value in bw which will be the number of clusters

 %get max from bw

 max = 0;
 for x=1:SIZE
 for y=1:SIZE
 if bw(x,y) > max
 max = bw(x,y);
 end
 end
 end

I then check every cluster and see if it reaches across from the top of the matrix to the bottom by seeing

if the index of that cluster exists in every row

 perculates = 0;
 for i=1:max
 if perculates == 1
 break;
 end

 gotInY = 1;
 for y=1:SIZE

 found = 0;
 for x = 1:SIZE
 if(bw(x,y) == 1)
 found = 1;
 break;

Braden Bagby Computational Physics Assignment 6

 end
 end

 if found == 0
 gotInY = 0;
 break; %not found in this y so this group doesnt perculate
 end

 end
 if gotInY
 perculates = 1;
 break;
 end
 end

If it does cross from top to bottom, this system is percolating and we add it to the total count

 numberPerculated = numberPerculated + perculates;

After doing N trials, we calculate the probability of percolation and add that to our matrix at the correct

index for the probability we were testing

 numberPerculated
 probOfPerculation = numberPerculated / trialsEach
 perculatedProbability(prob) = probOfPerculation;

Here is an example run of a size 20x20. Its percolation threshold is around 65

But we want to try this for a lot of different sizes, and plot the results.

Braden Bagby Computational Physics Assignment 6

So we put all of the already shown code in a loop and try many different sizes. If the probability of

percolation passes 0.9 we count that as the threshold and save it in an array

 if probOfPerculation > 0.9
 perculationThreshold = prob;
 break;

 end

At the end we plot all the sizes and percolation thresholds. Here is the result and it shows that the

percolation threshold is a set number that doesn’t depend on the size of the system. Its between 55 and

65 and probably around 60.

Size

Percolation threshold

