

Simplifying Sign Language Detection
for Smart Home Devices using Google MediaPipe

Braden Bagby, David Gray, Riley Hughes, Zachary Langford, and Robert Stonner

Abstract—Smart home technology has become more and more
ubiquitous in homes. In recent years, the demand for different
smart home and digital personal assistant technology has
increased dramatically. The technology for performing a variety
of different tasks has become quite advanced, from simple tasks
such as web searches, to more complex tasks such as recording
notes or turning on lights. Over time, research in various fields of
computer science have enhanced the capabilities of smart homes
with refined convolutional machine learning models that
constantly analyze sound input for activation phrases and context
dependent correction of detected words and phrases in commands.
However, one type of smart device input technology that is often
neglected is input via hand gesture, specifically sign language, and
using that to spell out command phrases. The lack of support for
hand gestures as an input for smart devices excludes some
communities of people from using these devices.

In this paper, we are proposing a unique approach to the
various problems that are faced when capturing hand gestures in
American Sign Language (ASL) for use as an input to a smart
device system. Our project takes advantage of Google’s rapidly
developing MediaPipe hand-tracking technology to simplify the
machine learning models that are detecting the ASL hand gestures
and translating them into English alphabetic characters. Our
prototype application also allows for a client-server separation of
the more resource intensive parts of the application and the
camera input and command output technology. We will take a look
at some current research done into hand gesture detection
technology, the Python framework we have built surrounding
MediaPipe and MediaPipe itself, how we trained the machine
learning model for hand gesture detection and its accuracy based
on a few metrics, and finally some thoughts on future work that
could be done based on the results of this project.

Keywords—machine learning, sign language, MediaPipe, smart
home, smart device, hand gesture, IoT

I. INTRODUCTION

 In recent years, computers have become more and more
essential to our everyday lives and the functions that we perform
daily. Our society is increasingly reliant on computers, and it is
important to have the most basics functions of those computers
as readily available as possible. For example, turning lights on
and off, locking doors, calling a friend, and searching the internet
are all essential functions which are now commonly done with
the help of computerized systems and the internet of things
(IoT). This network of internet connect computers is easily
access from a common, centralized technology hub known as a
smart home, smart device, or digital assistant.

 This smart device generally takes an input that comes more
naturally to a human. This is commonly a voice command such
as “turn on the lights” or “lock the front door”. These are
commands that make sense to a human. The smart device
typically takes this phase’s sound in via a microphone and runs
the detected audio data through a machine learning model that

has been trained on a large amount of audio data for many
different spoken words and phrases. These models can be
something as simple as a multilayer perceptron, but generally a
convolutional neural network is used, which is able better at
finding patterns in complex data. The machine learning model,
however it is implemented, attempts to find the words that have
been spoken from the audio data that has been detected, output
its best guess at the spoken phrase, and then connect that phrase
to a specific everyday process (e.g. turning on the lights) that has
already been linked to the smart device.

 This exercise in machine learning has been near perfected
when it comes to voice detection technology. There are a wide
variety of readily available smart devices and digital assistants
on many platforms that will easily detect voice commands and
perform their associated actions. However, there is a gap in this
technology when it comes to using any other natural human
communication medium to input commands to a smart device.
Specifically, this project was started because of a desire to
research and build new and better ways to take an input of hand-
based sign language gestures from a video feed and transform
them into a command string that can be performed by devices
within the internet of things.

 This technology is important so that smart devices can be
inclusive towards those with certain disabilities, and may only
be able to use sign language to communicate, or for any users
who may prefer to use sign language to communicate over
spoken language. Communication and interaction technologies
for the deaf or those who use sign language are often quite
expensive and computationally expensive. They are also often
difficult to install and maintain. With our approach, we hope to
create a system that uses existing technologies that are well
maintained to that our system can be more easily installed and
updated. We also hope to introduce the capability of the system
being distributed in a client-server architecture, which would
allow for the more computationally expensive server portion of
the system that interprets the hand gesture images to be separated
from the more accessible and easily integrated client module.

 There have been a few attempts to make readily available
hand gesture smart home technology. Our initial goal as stated
was to create a robust system that captures hand gestures in
American Sign Language, capturing basic English alphanumeric
signs A through Z and 1 through 9, with a 90% accuracy at
detecting any individual sign in real time. In this case, real time
is when an action occurs between 50 and 500 milliseconds after
the gesture action has been initiated.

 Our project specifically focused on an approach that
involved Google’s new, rapidly growing, and open-source
project, MediaPipe. MediaPipe has several pre-trained, high
accuracy image recognition machine learning models that run on
a live video feed. There are models for various parts of the
human body. Our project used the single hand recognition

module and used this module to create a simpler, faster hand
recognition machine learning model on top of this framework.

II. LITERATURE REVIEW

 Hand gesture recognition is a relatively difficult problem to
solve in the field of machine learning. Most of these initial
attempts at creating an extremely accurate machine learning
model that detects hand gestures from image frames use
conventional convolutional neural networks. In Sign Language
Gesture Recognition [1], the project contributors took an
approach of training a machine learning model using a custom
library of 80000 individual numeric signs with more than 500
pictures per sign. Their system is exemplary in showing a refined
approach to a convolutional neural network for hand gestures.
The system is split into a few major parts, those being a hand
detection system that uses a training database of pre-processed
images, and then a gesture recognition system.

 The image pre-processing uses what is known as feature
extraction in order to standardize the input information before
we either use it to train a machine learning model or use the pre-
trained machine learning model to predict something. The image
in the case of [1] is made to be grayscale, a standardized
resolution, and is also put through a process that gives object
contours within the image. Once the image is pre-processed, the
feature extraction techniques flatten the image into a smaller
amount of one-dimensional components from the set of two-
dimensional pixels. This technique helps highlight certain
features about the pixel data from images in a way that is easier
for the convolutional neural network that is being trained on this
data to understand.

 In addition [1] also uses a well-developed and use machine
learning process known as a convolutional neural network. With
a normal neural network, we have dense networks of connected
but individual nodes of information. A convolutional neural
network allows the nodes of a network to have large amounts of
multidimensional information in each node. Each of these nodes
can also be made to look at certain features that are extracted
during feature extraction. A convolutional network is also a type
of feed-forward network, which means that it takes into account
things that have been assessed during the previous layer’s
analysis. This can help when assessing some hand gestures that
have movement elements to them in addition to static finger
positions. In their system, [1] used a Python Open CV library for
image processing and input and a TensorFlow convolutional
neural network, and was able to achieve a hand gesture
recognition system that has an accuracy of around 95% to 98%,
citing the possibility that complex or noisy backgrounds or poor
lighting conditions may affect this accuracy.

 In the paper RGBD Video Based Human Hand Trajectory
Tracking and Gesture Recognition System [2] uses a few
additional techniques in hand tracking in two and three-
dimensional space. First, they use a couple of methods to help
extract hand features from image frames, namely skin saliency,
and motion and depth-based filters. Skin saliency takes the fact
that skin tones are generally within specific ranges in order to
increase the accuracy of feature extraction in image pre-
processing. The motion and depth filters reduce noise within the
image in the background and where uninteresting features and
movements arise. All of these processing methods were also
used in turn with a customized convolutional neural network and
a large dataset of hand gesture videos in a variety of

environments. With added gesture recognition techniques that
track hand gesture sequences in context of the gesture being
performed, this project resulted in an extremely accurate hand
tracking and gesture recognition at a classification accuracy of
around 98%.

 The project Dynamic Sign Language Recognition for Smart
Home Interactive Application Using Stochastic Linear Formal
Grammar [3] applies a novel technique in sign language
recognition, but also introduces smart home integration as a
consideration for their output. Their system looked at a smaller
amount of larger, dynamic hand gestures using the entire arm
rather than the finger spelling American Sign Language like our
project. It uses a machine learning approach that uses what is
called a bag-of-features method to identify hand gestures from
raw video input. This method separates various parts of the body
involved in gestures, such as the palm, fingers, wrist, upper arm,
and so on, allows certain features to be added or separated. This
eliminates a cumbersome need to constantly track different parts
of the body for gesture recognition, because we can approximate
the position of various parts based on other features.

 This approach uses a stochastic linear formal grammar
module. This module effectively increases the accuracy of the
machine learning model that classifies incoming hand gesture
sequences from images by looking at the gesture sequences in
turn, as a sort of feed-forward grammar checking. The system
has a default, predetermined grammar based on the possible
sequences of gestures that can be made. Although this may be
more difficult to scale to hand gesture sequences such as finger
spelling, where there are many more possible sequences, there is
still promise that some sort of post processing of predicted
gestures within a sequence produced from a machine learning
system may improve accuracy.

 All of these previous methods prove that hand gesture
recognition, or hand recognition in general, is achievable with a
high degree of accuracy with complex mathematical processing
and large datasets. For our project, our initial research found an
interesting and quickly developing open-source framework from
Google known as MediaPipe [4]. MediaPipe is a large collection
of high accuracy human body part detection and tracking
models. These models are trained on some of the best, largest,
and most diverse datasets from Google, and they track key points
on certain parts of the body as skeletons of nodes and edges, with
the nodes, or landmarks, being three-dimensional normalized
coordinate points. MediaPipe is a framework that allows
developers to use the custom-built models from Google, or
models built by developers using TensorFlow lite, in a way
where the pipelines of information flow are easily adaptable and
modifiable via graph files. A pipeline in MediaPipe is composed
of nodes on a graph, specified in a pbtxt file. These nodes are
connected to C++ files that expand upon the base calculator class
in MediaPipe. This class gets contracts of media streams from
other nodes in the graph, like a video stream for example,
ensures that it is connected, and then can output its own stream
of processed data once the rest of the pipeline nodes are
connected. Each stream of information to each calculator is sent
via packet objects, which encapsulate many different types of
information. Side packets can also be introduced into the graph,
where auxiliary data like constants or static properties can be
introduced to a calculator node. This simplicity of structure in
the data pipeline allows for additions and modifications to be
done more simply and with more precise control over how data

is being passed, how often, and how we are manipulating it
between processes.

 For MediaPipe hands module specifically [5], we have a
machine learning model that specifically looks at singular hands
within an image feed. MediaPipe hands consists of two different
machine learning models to detect the hand. First, the image is
pre-processed to set the image quality to a standard 256 x 256
size JPEG, grayscale, and then the image is given a contour
filter. The first MediaPipe model then attempts to detect the
palm of the hand, if there is one within the image, and crops the
image to another standard sized bounding box (see the size of
the image in Figure 1). Once this bounding box is determined for
the first time, MediaPipe will not have to spend nearly as much
computing power attempting to find the hand within the image.
If it knows where the palm was in the previous frame, it can more
easily find it in the next frame, assuming the palm does not move
to a great degree. Once the palm detection has been run,
MediaPipe runs its hand landmark detection model. As stated
previously, this model takes a standardized image of a hand and
produces a set of 21 hand landmarks. These landmarks are
normalized to the standard image size, a value between 1 and -
1, and contain x and y coordinates, as well as a z coordinate that
represents relative depth for each point (see the red dots on the
image in Figure 1).

Figure 1: A set of connected hand landmarks superimposed
onto the original hand image from MediaPipe Hands

with live video feed.

III. SOLUTIONS DETAILS

A. Video Feed Networking & Command Output

 The first part of our solution involves a client-side module
that performs two tasks, and theoretically allows our more
intensive processing via machine learning to be done on a
separate server module, containing the MediaPipe instance and
the gesture interpreter model. The client module takes input
frames from a connected video camera device. The video is
captured from the integrated video camera as individual frames
by Open CV and each frame is stored during runtime as a two-
dimensional numpy ndArray of size 86,400 bytes (480 x 60
pixels x3 RGB values). Each sub-array represents a sequential
pixel in the frame and consists of exactly three floating point
numbers that represent the red, green, and blue values of that
pixel.

 A custom application layer protocol was written to transmit
video frames to a server. Each frame is split into exactly twenty
slices to be sent over User Datagram Protocol to the listening
server. Each slice is converted into a character string and
prepended with a 40-byte header with four separate ten-byte

sections that represent the current frame sequence, the frame
size, the current slice sequence, and the slice size. The string is
then encoded into a UTF-8 byte string that can be sent through a
UDP socket.

Figure 2: A state machine diagram representing how captured

video frames are transferred from the client to the server.

 The protocol handles dropped packets with a timeout on each
frame, if the frame is not completely reconstructed after n
milliseconds, the receiver moves on to the next frame. The
timeout time n is a constant variable that can be changed to
account for lag. However, the shorter the timeout variable the
more likely the frame is to be skipped before receiving a slightly
delayed packet. The shorter the timeout variable make it more
likely that the server will miss frames, resulting in a less stable
video feed with missing or misplaced slices. There is an inverse
relationship between lag and glitch. The timeout variable should
be adjusted for optimization during setup to find optimal lag to
glitch ratio on the system hosting the component.

 The server UDP receiver retrieves the data packets from the
specified ports and reassembles the slices into their original
sequences before decoding them back into an ndArray and
pushing them onto a heap that is used as a buffer for the
incoming video frames. A separate function in the UDP receiver
then grabs frames from the reconstructed video feed, encodes
them into JPEG images and sends them over a TCP socket that
serves as an inter-process communication with MediaPipe. This
entire process is shown in Figure 2.

B. MediaPipe Integration

 For our MediaPipe integration, we built a Python framework
on top of MediaPipe, and also integrated hand landmark output
as a modification to the MediaPipe Hand detection code itself.
MediaPipe has defined inputs and outputs and performs work
each frame or at specified intervals. MediaPipe comes with a
hand tracking project that detects a hand and tracks its movement
using 21 defined landmarks on the detected hand. Each of these
landmarks represents a three dimensional coordinate,
normalized to a standardized range. We modified this hand
tracking example application for our use in two different cases.
In the first case, to create a custom dataset of csv files containing
hand landmarks for different hand gestures. This MediaPipe
build will be referred to as MediaPipe Trainer. Figure 3 shows a
sample hand image used in training and the set of hand landmark
coordinates that have been output by MediaPipe. In the second
case, we ran MediaPipe as a module in our main application and

determine the landmarks of a video feed in real time. This will
be referred to as MediaPipe Run.

Figure 3: A sample hand gesture image frame from the
training set, and the output of normalized hand landmarks

to a csv file (one row per landmark).

 We customized MediaPipe’s hand tracking program to
perform two different methods of input. The hand tracking
program normally captures frames from your device’s webcam
in order to perform the landmark detection. For our use case, we
need to provide two custom types of input: a single image that
can be defined by a command line argument and a JPEG image
stream sent over TCP. To provide a single image, we modified
MediaPipe to take a command line argument for the image file
path and use OpenCV to read the image. After reading the image
and performing landmark detection one time, the program
outputs the detected landmarks to a csv file and terminates. This
first case is done for the MediaPipe Trainer build. Providing a
constant JPEG image stream over TCP was slightly more
complicated. A separate thread listens for a TCP connection to
receive data. This thread saves that data to a buffer. This buffer
is then accessed by MediaPipe’s main process loop (which is
normally called on every frame from the webcam feed). This
allows MediaPipe to read the continuous stream of JPEG images
to the TCP port as if it was reading straight from a web cam. This
continuous input is done for the MediaPipe Run build.

 We also customized media pipe to perform two different
methods of output. We need to output the coordinates of the 21
points detected from the hand in the image. This was done by
modifying the graph of the program and inserting a custom
calculator. This calculator receives the 21 detected landmarks as
input and outputs them to either a csv file or TCP connection.
The MediaPipe Trainer build outputs to a csv file, while the
MediaPipe Run build outputs over TCP.

 We now have two custom MediaPipe builds. The MediaPipe
Trainer build is used to convert any dataset of images to a dataset
of csv files containing the 21 detected landmarks from each
image. After conversion, a TensorFlow model can be trained on
the new dataset. The MediaPipe Run build receives a constant
TCP stream of JPEG images and constantly outputs the 21
detected points over TCP. This is done so another process can
receive these 21 points and run it through the trained TensorFlow
model to classify a gesture.

C. Machine Learning Model

 Our machine learning model was designed to take an input
of hand landmark coordinate sets from our library of landmarks
sets extracted from our training images of hands performing
American Sign Language gestures for letters A through Z. Our

original image dataset was about 15000 images distributed
evenly among all 26 characters. When we initially ran this set
through our MediaPipe train module, some of the landmark
coordinate sets for certain images were not accurate to the
gesture being performed. This is most likely because, when we
fed all the images through MediaPipe, we were only sending a
single image frame. Because of the two machine learning
models MediaPipe Hands runs the images through, one where it
finds the palm and the other where it tracks the hand, MediaPipe
is more accurate on a live video feed where it can detect for the
palm in a few frames before detecting the fingers for the first
time. We then went through all the coordinate sets for each
image, and determined which sets correctly matches or closely
matched the hand gesture, and used those to train our
convolutional model. Each letter had about 300 sets of
landmarks to train on per gesture. We shaped out data of 21
landmarks, those being 63 floating point numbers, and placed
each set of landmarks corresponding to a finger on the hand into
its own separate tensor. Our machine learning model consists of
three convolutional 2D layers in TensorFlow with a rectified
linear unit activation function on each, which are then flattened
and then put through a dense layer with the same activation
function.

C. Grammar and Command Output

 The grammar module is a smaller component that exists as a
part of the same Python application process that runs the gesture
interpreter component. The grammar module exists to add
additional accuracy to our gesture interpreter, which may have
some difficulties interpreting hand gestures, thus resulting in an
incorrect guess. The grammar module will first receive an input
string from the gesture interpreter after the gesture interpreter
has completed running the set of hand landmark points through
the model for an individual sequence of hand gestures within a
specific time frame. The gesture interpreter will gather the set of
interpreted gestures as English characters and give them to the
grammar component.

 This module performs an autocomplete and autosuggest
function, like a simple edit distance calculation, on the input
string, and attempt to find the most similar command phrase that
this input string is trying to express with possible errors, based
on a pre-gathered library of possible commands based on
common smart home input commands. If the autocomplete and
autosuggest functions are unable to find any command phrases
that are within a certain distance from the input string after
analysis, then it will let the rest of the entire system know by
outputting an error to the console. Otherwise, the system will
send the command the input string most likely represents to the
command output component client over a TCP network
connection, which will then output the command to a smart
home or similar device.

 The command output module should facilitate the creation
of TCP sockets on the server and client ends so that commands
can be sent over the network after they have been interpreted by
the gesture interpretation system and the grammar module. The
commands will then be mapped to smart home API functions.
For our project, our system merely connects to a simple smart
device API called IFTTT, which currently only has the
functionality to output the command to text, but has the
capability of doing a wide variety of commands, similar to the
ones stated at the introduction to this project.

IV. SOLUTION EVALUATION

A. Efficacy of Machine Learning Model

 Figure 4: Confusion Matrix of CNN with 20 Classes.

 To evaluate our machine learning models we used a series of
different measures including accuracy, precision, recall, and f1-
score. Accuracy is the ratio of correct predictions to the total
predictions made. Since we have a multi-class target the
accuracy can give misleading results by hiding information
using a broad overview of the results. For this reason, we must
use precision, recall, and f1-score. Precision calculates the
ability of a classifier to not label a true negative observation as
positive. Recall calculates the ability of a classifier to find
positive observations in the data. F1-score helps to measure
recall and precision at the same time finding a harmonic mean
by punishing extreme values.

 To calculate these measures, we first pass the 20% of our data
we reserved for testing purposes through the models and record
the results in a confusion matrix. The confusion matrices in
Figure 4 and 5 compare the class predicted by the model to the
actual class recorded in the testing data. The y-axis refers to the
true label and x-axis refers to the predicted label. The opacity of
each square represents the number of samples that were
classified accordingly. The optimal results would be a diagonal
line of dark colored squares starting from the topmost, left most
square and ending at the bottom-most, right most square. That
pattern would explain that every sample has been correctly
classified.

 Figure 5: Confusion Matrix of CNN with 14 Classes.

 Looking at Figure 4, we observe that the convolutional neural
network with twenty classes does not follow the diagonal line of
optimal results. The model has incorrectly classified forty-four
samples of J’s as I’s, fifty-two samples of Y’s as L’s, sixty
samples of G’s as L’s, and twenty-two samples of D’s as C’s.
These instances of misclassifications lead to lower scores in
accuracy, precision, recall, and f1, shown by Figure 6. Since this
is not a binary classifier, we must calculate the weighted average
of all the scores. The results in Figure 6 show accuracy as 62%,
weighted average precision as 50%, weighted average recall as
62%, and weighted average f1-score as 54%. To achieve higher
scores, we removed the classes with bad results, which included
labels G, J, R, S, T, and V leaving us with a total of fourteen
classes.

 The convolutional neural network with fourteen classes,
shown in Figure 5, displays almost perfect results with only a
few outliers in classes C, D, E, and F totally around 1% of the
testing data. These results lead to very high accuracy, precision,
recall, and f1-score. As seen in Figure 7, the accuracy, weighted
average precision, weighted average recall, and weighted

average f1-score are all around 99%.

 Figure 6: Classification Report of CNN with 20 Classes

Figure 7: Classification Report of CNN with 14 Classes

 Figure 8: Accuracy of CNN with 20 Classes.

Figure 9: Accuracy of CNN with 20 Classes.

B. Timing Approximation

 We ran tests on several live video feeds to record the average
time it took to run an image frame through the MediaPipe
integration module and the gesture interpreter. We decided to not
include the time for the video feed networking component, or
anything being outputted by or received by the client module,
because those components are merely limited by internet
transfer rate. We also did not include the time the gesture
sequence, that is, the outputted command, takes to be processed
by the grammar module, because this is also a trivial
computation, and only take a millisecond or two at the most.

 Doing tests with every single gesture in our library after
training the model, it took an average of 71 milliseconds to run
an image frame through MediaPipe via the MediaPipe
integration module. The gesture interpreter module then took an
average of 156 milliseconds to process the set of landmarks that
have been given as an output from MediaPipe. This means that
our core sign language interpretation takes, on average, 227
milliseconds to process a given gesture in sign language. This is
important, because although our accuracy may be a bit off our
target to an extent, and lower than some other researchers
performing similar operations, our real-time calculation goal is
well under the desired threshold of between 50 milliseconds to
500 milliseconds.

V. CONCLUSION

 Our tests adequately show that MediaPipe can be easily used
as a tool to accurately determine hand gestures. Although our
model fell short of some of our goals in terms of the variety of
different hand gestures that can be detected, ultimately, we were
able successfully include enough of a variety of letter that, with
a larger, more accurate, and more diverse training set of hand
landmarks, could easily be expanded upon and strengthened in
accuracy. Avenues for further research could include further
manipulation of hand landmark data for more complex and
dynamic gestures, such as tracking individual velocity of
landmarks for signs such as J or Z, or any other moving hand

gestures. One could also improve upon the machine learning
model used by testing different activation function or layers to
see if accuracy with the 20 classes can be improved. Ultimately,
further research into hand gesture recognition systems
specifically for smart devices and including MediaPipe’s state-
of-the-art technology is very likely, as MediaPipe allows for an
ease of breaking down and analyzing complex hand tracking
information, without having to construct a brand new
convolutional neural network for image recognition from
scratch.

REFERENCES

[1] R. Sharma, R. Khapra, N. Dahiya, “Sign Language Gesture Recognition.,”
in Sign, June 2020, pp.14-19

[2] W. Liu, Y. Fan, Z. Li, Z. Zhang, “Rgbd video based human hand trajectory
tracking and gesture recognition system,” in Mathematical Problems in
Engineering, Jan. 2015

[3] MR. Abid, EM. Petriu, E. Amjadian, “Dynamic sign language recognition
for smart home interactive application using stochastic linear formal
grammar,” in IEEE Transactions on Instrumentation and Measurement,
Sep. 2015, pp. 596-605

[4] C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E. Uboweja, M. Hays, F.
Zhang, Cl. Chang, MG. Yong, J. Lee, WT. Chang, “Mediapipe: A frame-
work for building perception pipelines,”, June 2019, doi:1906.08172

[5] F. Zhang, V. Bazarevsky, A. Vakunov, A. Tkachenka, G. Sung, CL.
Chang, M. Grundmann. “MediaPipe hands: on-device real-time hand
tracking”, June 2020

	I. Introduction
	II. Literature Review
	III. Solutions Details
	IV. Solution Evaluation
	V. Conclusion
	References

