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Abstract—Smart home technology has become more and more 
ubiquitous in homes. In recent years, the demand for different 
smart home and digital personal assistant technology has 
increased dramatically. The technology for performing a variety 
of different tasks has become quite advanced, from simple tasks 
such as web searches, to more complex tasks such as recording 
notes or turning on lights. Over time, research in various fields of 
computer science have enhanced the capabilities of smart homes 
with refined convolutional machine learning models that 
constantly analyze sound input for activation phrases and context 
dependent correction of detected words and phrases in commands. 
However, one type of smart device input technology that is often 
neglected is input via hand gesture, specifically sign language, and 
using that to spell out command phrases. The lack of support for 
hand gestures as an input for smart devices excludes some 
communities of people from using these devices. 

In this paper, we are proposing a unique approach to the 
various problems that are faced when capturing hand gestures in 
American Sign Language (ASL) for use as an input to a smart 
device system. Our project takes advantage of Google’s rapidly 
developing MediaPipe hand-tracking technology to simplify the 
machine learning models that are detecting the ASL hand gestures 
and translating them into English alphabetic characters. Our 
prototype application also allows for a client-server separation of 
the more resource intensive parts of the application and the 
camera input and command output technology. We will take a look 
at some current research done into hand gesture detection 
technology, the Python framework we have built surrounding 
MediaPipe and MediaPipe itself, how we trained the machine 
learning model for hand gesture detection and its accuracy based 
on a few metrics, and finally some thoughts on future work that 
could be done based on the results of this project. 
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I. INTRODUCTION 

 In recent years, computers have become more and more 
essential to our everyday lives and the functions that we perform 
daily. Our society is increasingly reliant on computers, and it is 
important to have the most basics functions of those computers 
as readily available as possible. For example, turning lights on 
and off, locking doors, calling a friend, and searching the internet 
are all essential functions which are now commonly done with 
the help of computerized systems and the internet of things 
(IoT). This network of internet connect computers is easily 
access from a common, centralized technology hub known as a 
smart home, smart device, or digital assistant.  

 This smart device generally takes an input that comes more 
naturally to a human. This is commonly a voice command such 
as “turn on the lights” or “lock the front door”. These are 
commands that make sense to a human. The smart device 
typically takes this phase’s sound in via a microphone and runs 
the detected audio data through a machine learning model that 

has been trained on a large amount of audio data for many 
different spoken words and phrases. These models can be 
something as simple as a multilayer perceptron, but generally a 
convolutional neural network is used, which is able better at 
finding patterns in complex data. The machine learning model, 
however it is implemented, attempts to find the words that have 
been spoken from the audio data that has been detected, output 
its best guess at the spoken phrase, and then connect that phrase 
to a specific everyday process (e.g. turning on the lights) that has 
already been linked to the smart device. 

 This exercise in machine learning has been near perfected 
when it comes to voice detection technology. There are a wide 
variety of readily available smart devices and digital assistants 
on many platforms that will easily detect voice commands and 
perform their associated actions. However, there is a gap in this 
technology when it comes to using any other natural human 
communication medium to input commands to a smart device. 
Specifically, this project was started because of a desire to 
research and build new and better ways to take an input of hand-
based sign language gestures from a video feed and transform 
them into a command string that can be performed by devices 
within the internet of things. 

 This technology is important so that smart devices can be 
inclusive towards those with certain disabilities, and may only 
be able to use sign language to communicate, or for any users 
who may prefer to use sign language to communicate over 
spoken language. Communication and interaction technologies 
for the deaf or those who use sign language are often quite 
expensive and computationally expensive. They are also often 
difficult to install and maintain. With our approach, we hope to 
create a system that uses existing technologies that are well 
maintained to that our system can be more easily installed and 
updated. We also hope to introduce the capability of the system 
being distributed in a client-server architecture, which would 
allow for the more computationally expensive server portion of 
the system that interprets the hand gesture images to be separated 
from the more accessible and easily integrated client module. 

 There have been a few attempts to make readily available 
hand gesture smart home technology. Our initial goal as stated 
was to create a robust system that captures hand gestures in 
American Sign Language, capturing basic English alphanumeric 
signs A through Z and 1 through 9, with a 90% accuracy at 
detecting any individual sign in real time. In this case, real time 
is when an action occurs between 50 and 500 milliseconds after 
the gesture action has been initiated. 

 Our project specifically focused on an approach that 
involved Google’s new, rapidly growing, and open-source 
project, MediaPipe. MediaPipe has several pre-trained, high 
accuracy image recognition machine learning models that run on 
a live video feed. There are models for various parts of the 
human body. Our project used the single hand recognition 



 

module and used this module to create a simpler, faster hand 
recognition machine learning model on top of this framework. 

II. LITERATURE REVIEW 

 Hand gesture recognition is a relatively difficult problem to 
solve in the field of machine learning. Most of these initial 
attempts at creating an extremely accurate machine learning 
model that detects hand gestures from image frames use 
conventional convolutional neural networks. In Sign Language 
Gesture Recognition [1], the project contributors took an 
approach of training a machine learning model using a custom 
library of 80000 individual numeric signs with more than 500 
pictures per sign. Their system is exemplary in showing a refined 
approach to a convolutional neural network for hand gestures. 
The system is split into a few major parts, those being a hand 
detection system that uses a training database of pre-processed 
images, and then a gesture recognition system. 

 The image pre-processing uses what is known as feature 
extraction in order to standardize the input information before 
we either use it to train a machine learning model or use the pre-
trained machine learning model to predict something. The image 
in the case of [1] is made to be grayscale, a standardized 
resolution, and is also put through a process that gives object 
contours within the image. Once the image is pre-processed, the 
feature extraction techniques flatten the image into a smaller 
amount of one-dimensional components from the set of two-
dimensional pixels. This technique helps highlight certain 
features about the pixel data from images in a way that is easier 
for the convolutional neural network that is being trained on this 
data to understand. 

 In addition [1] also uses a well-developed and use machine 
learning process known as a convolutional neural network. With 
a normal neural network, we have dense networks of connected 
but individual nodes of information. A convolutional neural 
network allows the nodes of a network to have large amounts of 
multidimensional information in each node. Each of these nodes 
can also be made to look at certain features that are extracted 
during feature extraction. A convolutional network is also a type 
of feed-forward network, which means that it takes into account 
things that have been assessed during the previous layer’s 
analysis. This can help when assessing some hand gestures that 
have movement elements to them in addition to static finger 
positions. In their system, [1] used a Python Open CV library for 
image processing and input and a TensorFlow convolutional 
neural network, and was able to achieve a hand gesture 
recognition system that has an accuracy of around 95% to 98%, 
citing the possibility that complex or noisy backgrounds or poor 
lighting conditions may affect this accuracy. 

  In the paper RGBD Video Based Human Hand Trajectory 
Tracking and Gesture Recognition System [2] uses a few 
additional techniques in hand tracking in two and three-
dimensional space. First, they use a couple of methods to help 
extract hand features from image frames, namely skin saliency, 
and motion and depth-based filters. Skin saliency takes the fact 
that skin tones are generally within specific ranges in order to 
increase the accuracy of feature extraction in image pre-
processing. The motion and depth filters reduce noise within the 
image in the background and where uninteresting features and 
movements arise. All of these processing methods were also 
used in turn with a customized convolutional neural network and 
a large dataset of hand gesture videos in a variety of 

environments. With added gesture recognition techniques that 
track hand gesture sequences in context of the gesture being 
performed, this project resulted in an extremely accurate hand 
tracking and gesture recognition at a classification accuracy of 
around 98%. 

 The project Dynamic Sign Language Recognition for Smart 
Home Interactive Application Using Stochastic Linear Formal 
Grammar [3] applies a novel technique in sign language 
recognition, but also introduces smart home integration as a 
consideration for their output. Their system looked at a smaller 
amount of larger, dynamic hand gestures using the entire arm 
rather than the finger spelling American Sign Language like our 
project. It uses a machine learning approach that uses what is 
called a bag-of-features method to identify hand gestures from 
raw video input. This method separates various parts of the body 
involved in gestures, such as the palm, fingers, wrist, upper arm, 
and so on, allows certain features to be added or separated. This 
eliminates a cumbersome need to constantly track different parts 
of the body for gesture recognition, because we can approximate 
the position of various parts based on other features.  

 This approach uses a stochastic linear formal grammar 
module. This module effectively increases the accuracy of the 
machine learning model that classifies incoming hand gesture 
sequences from images by looking at the gesture sequences in 
turn, as a sort of feed-forward grammar checking. The system 
has a default, predetermined grammar based on the possible 
sequences of gestures that can be made. Although this may be 
more difficult to scale to hand gesture sequences such as finger 
spelling, where there are many more possible sequences, there is 
still promise that some sort of post processing of predicted 
gestures within a sequence produced from a machine learning 
system may improve accuracy. 

 All of these previous methods prove that hand gesture 
recognition, or hand recognition in general, is achievable with a 
high degree of accuracy with complex mathematical processing 
and large datasets. For our project, our initial research found an 
interesting and quickly developing open-source framework from 
Google known as MediaPipe [4]. MediaPipe is a large collection 
of high accuracy human body part detection and tracking 
models. These models are trained on some of the best, largest, 
and most diverse datasets from Google, and they track key points 
on certain parts of the body as skeletons of nodes and edges, with 
the nodes, or landmarks, being three-dimensional normalized 
coordinate points. MediaPipe is a framework that allows 
developers to use the custom-built models from Google, or 
models built by developers using TensorFlow lite, in a way 
where the pipelines of information flow are easily adaptable and 
modifiable via graph files. A pipeline in MediaPipe is composed 
of nodes on a graph, specified in a pbtxt file. These nodes are 
connected to C++ files that expand upon the base calculator class 
in MediaPipe. This class gets contracts of media streams from 
other nodes in the graph, like a video stream for example, 
ensures that it is connected, and then can output its own stream 
of processed data once the rest of the pipeline nodes are 
connected. Each stream of information to each calculator is sent 
via packet objects, which encapsulate many different types of 
information.  Side packets can also be introduced into the graph, 
where auxiliary data like constants or static properties can be 
introduced to a calculator node. This simplicity of structure in 
the data pipeline allows for additions and modifications to be 
done more simply and with more precise control over how data 



 

is being passed, how often, and how we are manipulating it 
between processes. 

 For MediaPipe hands module specifically [5], we have a 
machine learning model that specifically looks at singular hands 
within an image feed. MediaPipe hands consists of two different 
machine learning models to detect the hand. First, the image is 
pre-processed to set the image quality to a standard 256 x 256 
size JPEG, grayscale, and then the image is given a contour 
filter. The first MediaPipe model then attempts to detect the 
palm of the hand, if there is one within the image, and crops the 
image to another standard sized bounding box (see the size of 
the image in Figure 1). Once this bounding box is determined for 
the first time, MediaPipe will not have to spend nearly as much 
computing power attempting to find the hand within the image. 
If it knows where the palm was in the previous frame, it can more 
easily find it in the next frame, assuming the palm does not move 
to a great degree. Once the palm detection has been run, 
MediaPipe runs its hand landmark detection model. As stated 
previously, this model takes a standardized image of a hand and 
produces a set of 21 hand landmarks. These landmarks are 
normalized to the standard image size, a value between 1 and -
1, and contain x and y coordinates, as well as a z coordinate that 
represents relative depth for each point (see the red dots on the 
image in Figure 1). 

Figure 1: A set of connected hand landmarks superimposed 
onto the original hand image from MediaPipe Hands  

with live video feed. 

III. SOLUTIONS DETAILS 

A. Video Feed Networking & Command Output 

 The first part of our solution involves a client-side module 
that performs two tasks, and theoretically allows our more 
intensive processing via machine learning to be done on a 
separate server module, containing the MediaPipe instance and 
the gesture interpreter model. The client module takes input 
frames from a connected video camera device. The video is 
captured from the integrated video camera as individual frames 
by Open CV and each frame is stored during runtime as a two-
dimensional numpy ndArray of size 86,400 bytes (480 x 60 
pixels x3 RGB values). Each sub-array represents a sequential 
pixel in the frame and consists of exactly three floating point 
numbers that represent the red, green, and blue values of that 
pixel.  

 A custom application layer protocol was written to transmit 
video frames to a server. Each frame is split into exactly twenty 
slices to be sent over User Datagram Protocol to the listening 
server. Each slice is converted into a character string and 
prepended with a 40-byte header with four separate ten-byte 

sections that represent the current frame sequence, the frame 
size, the current slice sequence, and the slice size. The string is 
then encoded into a UTF-8 byte string that can be sent through a 
UDP socket. 

Figure 2: A state machine diagram representing how captured 

video frames are transferred from the client to the server. 

 The protocol handles dropped packets with a timeout on each 
frame, if the frame is not completely reconstructed after n 
milliseconds, the receiver moves on to the next frame. The 
timeout time n is a constant variable that can be changed to 
account for lag. However, the shorter the timeout variable the 
more likely the frame is to be skipped before receiving a slightly 
delayed packet. The shorter the timeout variable make it more 
likely that the server will miss frames, resulting in a less stable 
video feed with missing or misplaced slices. There is an inverse 
relationship between lag and glitch. The timeout variable should 
be adjusted for optimization during setup to find optimal lag to 
glitch ratio on the system hosting the component. 

 The server UDP receiver retrieves the data packets from the 
specified ports and reassembles the slices into their original 
sequences before decoding them back into an ndArray and 
pushing them onto a heap that is used as a buffer for the 
incoming video frames. A separate function in the UDP receiver 
then grabs frames from the reconstructed video feed, encodes 
them into JPEG images and sends them over a TCP socket that 
serves as an inter-process communication with MediaPipe. This 
entire process is shown in Figure 2. 

B. MediaPipe Integration 

 For our MediaPipe integration, we built a Python framework 
on top of MediaPipe, and also integrated hand landmark output 
as a modification to the MediaPipe Hand detection code itself. 
MediaPipe has defined inputs and outputs and performs work 
each frame or at specified intervals. MediaPipe comes with a 
hand tracking project that detects a hand and tracks its movement 
using 21 defined landmarks on the detected hand. Each of these 
landmarks represents a three dimensional coordinate, 
normalized to a standardized range. We modified this hand 
tracking example application for our use in two different cases. 
In the first case, to create a custom dataset of csv files containing 
hand landmarks for different hand gestures. This MediaPipe 
build will be referred to as MediaPipe Trainer. Figure 3 shows a 
sample hand image used in training and the set of hand landmark 
coordinates that have been output by MediaPipe. In the second 
case, we ran MediaPipe as a module in our main application and 



 

determine the landmarks of a video feed in real time. This will 
be referred to as MediaPipe Run. 

   

Figure 3: A sample hand gesture image frame from the 
training set, and the output of normalized hand landmarks  

to a csv file (one row per landmark). 

 We customized MediaPipe’s hand tracking program to 
perform two different methods of input. The hand tracking 
program normally captures frames from your device’s webcam 
in order to perform the landmark detection. For our use case, we 
need to provide two custom types of input: a single image that 
can be defined by a command line argument and a JPEG image 
stream sent over TCP. To provide a single image, we modified 
MediaPipe to take a command line argument for the image file 
path and use OpenCV to read the image. After reading the image 
and performing landmark detection one time, the program 
outputs the detected landmarks to a csv file and terminates. This 
first case is done for the MediaPipe Trainer build. Providing a 
constant JPEG image stream over TCP was slightly more 
complicated. A separate thread listens for a TCP connection to 
receive data. This thread saves that data to a buffer. This buffer 
is then accessed by MediaPipe’s main process loop (which is 
normally called on every frame from the webcam feed). This 
allows MediaPipe to read the continuous stream of JPEG images 
to the TCP port as if it was reading straight from a web cam. This 
continuous input is done for the MediaPipe Run build. 

 We also customized media pipe to perform two different 
methods of output. We need to output the coordinates of the 21 
points detected from the hand in the image. This was done by 
modifying the graph of the program and inserting a custom 
calculator. This calculator receives the 21 detected landmarks as 
input and outputs them to either a csv file or TCP connection. 
The MediaPipe Trainer build outputs to a csv file, while the 
MediaPipe Run build outputs over TCP.  

 We now have two custom MediaPipe builds. The MediaPipe 
Trainer build is used to convert any dataset of images to a dataset 
of csv files containing the 21 detected landmarks from each 
image. After conversion, a TensorFlow model can be trained on 
the new dataset. The MediaPipe Run build receives a constant 
TCP stream of JPEG images and constantly outputs the 21 
detected points over TCP. This is done so another process can 
receive these 21 points and run it through the trained TensorFlow 
model to classify a gesture.  

C. Machine Learning Model 

 Our machine learning model was designed to take an input 
of hand landmark coordinate sets from our library of landmarks 
sets extracted from our training images of hands performing 
American Sign Language gestures for letters A through Z. Our 

original image dataset was about 15000 images distributed 
evenly among all 26 characters. When we initially ran this set 
through our MediaPipe train module, some of the landmark 
coordinate sets for certain images were not accurate to the 
gesture being performed. This is most likely because, when we 
fed all the images through MediaPipe, we were only sending a 
single image frame. Because of the two machine learning 
models MediaPipe Hands runs the images through, one where it 
finds the palm and the other where it tracks the hand, MediaPipe 
is more accurate on a live video feed where it can detect for the 
palm in a few frames before detecting the fingers for the first 
time. We then went through all the coordinate sets for each 
image, and determined which sets correctly matches or closely 
matched the hand gesture, and used those to train our 
convolutional model. Each letter had about 300 sets of 
landmarks to train on per gesture. We shaped out data of 21 
landmarks, those being 63 floating point numbers, and placed 
each set of landmarks corresponding to a finger on the hand into 
its own separate tensor. Our machine learning model consists of 
three convolutional 2D layers in TensorFlow with a rectified 
linear unit activation function on each, which are then flattened 
and then put through a dense layer with the same activation 
function. 

C. Grammar and Command Output 

 The grammar module is a smaller component that exists as a 
part of the same Python application process that runs the gesture 
interpreter component. The grammar module exists to add 
additional accuracy to our gesture interpreter, which may have 
some difficulties interpreting hand gestures, thus resulting in an 
incorrect guess. The grammar module will first receive an input 
string from the gesture interpreter after the gesture interpreter 
has completed running the set of hand landmark points through 
the model for an individual sequence of hand gestures within a 
specific time frame. The gesture interpreter will gather the set of 
interpreted gestures as English characters and give them to the 
grammar component.  

 This module performs an autocomplete and autosuggest 
function, like a simple edit distance calculation, on the input 
string, and attempt to find the most similar command phrase that 
this input string is trying to express with possible errors, based 
on a pre-gathered library of possible commands based on 
common smart home input commands. If the autocomplete and 
autosuggest functions are unable to find any command phrases 
that are within a certain distance from the input string after 
analysis, then it will let the rest of the entire system know by 
outputting an error to the console. Otherwise, the system will 
send the command the input string most likely represents to the 
command output component client over a TCP network 
connection, which will then output the command to a smart 
home or similar device. 

 The command output module should facilitate the creation 
of TCP sockets on the server and client ends so that commands 
can be sent over the network after they have been interpreted by 
the gesture interpretation system and the grammar module. The 
commands will then be mapped to smart home API functions. 
For our project, our system merely connects to a simple smart 
device API called IFTTT, which currently only has the 
functionality to output the command to text, but has the 
capability of doing a wide variety of commands, similar to the 
ones stated at the introduction to this project. 



 

IV. SOLUTION EVALUATION 

 
A. Efficacy of Machine Learning Model 

     Figure 4: Confusion Matrix of CNN with 20 Classes. 

     To evaluate our machine learning models we used a series of 
different measures including accuracy, precision, recall, and f1-
score. Accuracy is the ratio of correct predictions to the total 
predictions made. Since we have a multi-class target the 
accuracy can give misleading results by hiding information 
using a broad overview of the results. For this reason, we must 
use precision, recall, and f1-score. Precision calculates the 
ability of a classifier to not label a true negative observation as 
positive. Recall calculates the ability of a classifier to find 
positive observations in the data. F1-score helps to measure 
recall and precision at the same time finding a harmonic mean 
by punishing extreme values. 

     To calculate these measures, we first pass the 20% of our data 
we reserved for testing purposes through the models and record 
the results in a confusion matrix. The confusion matrices in 
Figure 4 and 5 compare the class predicted by the model to the 
actual class recorded in the testing data. The y-axis refers to the 
true label and x-axis refers to the predicted label. The opacity of 
each square represents the number of samples that were 
classified accordingly. The optimal results would be a diagonal 
line of dark colored squares starting from the topmost, left most 
square and ending at the bottom-most, right most square. That 
pattern would explain that every sample has been correctly 
classified.  

 Figure 5: Confusion Matrix of CNN with 14 Classes. 

     Looking at Figure 4, we observe that the convolutional neural 
network with twenty classes does not follow the diagonal line of 
optimal results. The model has incorrectly classified forty-four 
samples of J’s as I’s, fifty-two samples of Y’s as L’s, sixty 
samples of G’s as L’s, and twenty-two samples of D’s as C’s. 
These instances of misclassifications lead to lower scores in 
accuracy, precision, recall, and f1, shown by Figure 6. Since this 
is not a binary classifier, we must calculate the weighted average 
of all the scores. The results in Figure 6 show accuracy as 62%, 
weighted average precision as 50%, weighted average recall as 
62%, and weighted average f1-score as 54%. To achieve higher 
scores, we removed the classes with bad results, which included 
labels G, J, R, S, T, and V leaving us with a total of fourteen 
classes.  

     The convolutional neural network with fourteen classes, 
shown in Figure 5, displays almost perfect results with only a 
few outliers in classes C, D, E, and F totally around 1% of the 
testing data. These results lead to very high accuracy, precision, 
recall, and f1-score. As seen in Figure 7, the accuracy, weighted 
average precision, weighted average recall, and weighted 

average f1-score are all around 99%.  



 

  

 Figure 6: Classification Report of CNN with 20 Classes  

  

Figure 7: Classification Report of CNN with 14 Classes  

  Figure 8: Accuracy of CNN with 20 Classes. 

Figure 9: Accuracy of CNN with 20 Classes. 

B. Timing Approximation 

 We ran tests on several live video feeds to record the average 
time it took to run an image frame through the MediaPipe 
integration module and the gesture interpreter. We decided to not 
include the time for the video feed networking component, or 
anything being outputted by or received by the client module, 
because those components are merely limited by internet 
transfer rate. We also did not include the time the gesture 
sequence, that is, the outputted command, takes to be processed 
by the grammar module, because this is also a trivial 
computation, and only take a millisecond or two at the most.  

 Doing tests with every single gesture in our library after 
training the model, it took an average of 71 milliseconds to run 
an image frame through MediaPipe via the MediaPipe 
integration module. The gesture interpreter module then took an 
average of 156 milliseconds to process the set of landmarks that 
have been given as an output from MediaPipe. This means that 
our core sign language interpretation takes, on average, 227 
milliseconds to process a given gesture in sign language. This is 
important, because although our accuracy may be a bit off our 
target to an extent, and lower than some other researchers 
performing similar operations, our real-time calculation goal is 
well under the desired threshold of between 50 milliseconds to 
500 milliseconds. 

V. CONCLUSION 

 Our tests adequately show that MediaPipe can be easily used 
as a tool to accurately determine hand gestures. Although our 
model fell short of some of our goals in terms of the variety of 
different hand gestures that can be detected, ultimately, we were 
able successfully include enough of a variety of letter that, with 
a larger, more accurate, and more diverse training set of hand 
landmarks, could easily be expanded upon and strengthened in 
accuracy. Avenues for further research could include further 
manipulation of hand landmark data for more complex and 
dynamic gestures, such as tracking individual velocity of 
landmarks for signs such as J or Z, or any other moving hand 



 

gestures. One could also improve upon the machine learning 
model used by testing different activation function or layers to 
see if accuracy with the 20 classes can be improved. Ultimately, 
further research into hand gesture recognition systems 
specifically for smart devices and including MediaPipe’s state-
of-the-art technology is very likely, as MediaPipe allows for an 
ease of breaking down and analyzing complex hand tracking 
information, without having to construct a brand new 
convolutional neural network for image recognition from 
scratch. 
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